

Adaptive Risk Scoring Models in FinTech Leveraging Artificial Intelligence and Privacy-Preserving Encryption

Karan Serveish

Independent researcher, Amazon

Abstract: The rapid growth of financial technology (FinTech) platforms has intensified the need for dynamic, accurate, and secure risk assessment systems. Traditional static risk scoring models are insufficient to address evolving fraud patterns, behavioral anomalies, and sophisticated cyber threats. This paper proposes an adaptive risk scoring framework that integrates artificial intelligence (AI) with privacy-preserving encryption techniques. The model continuously updates risk scores using behavioral analytics, transaction patterns, and contextual intelligence while ensuring that sensitive financial data remains protected through advanced cryptographic mechanisms such as homomorphic encryption and differential privacy. Experimental results demonstrate that adaptive AI-driven risk scoring significantly improves fraud detection accuracy and reduces false positives while maintaining compliance with data protection regulations. The proposed architecture offers a scalable, secure, and intelligent approach to modern financial risk management.

Keywords: Explainable AI, Fraud Prevention, FinTech Security, Data Governance

1. Introduction

FinTech ecosystems rely heavily on automated decision-making systems to evaluate transaction legitimacy, creditworthiness, and fraud risk. Conventional rule-based and static scoring models suffer from several limitations:

- Inability to adapt to emerging fraud techniques
- High false positive rates
- Delayed response to behavioral drift
- Exposure of sensitive financial data during processing

As fraud patterns evolve rapidly, financial institutions require adaptive, data-driven models capable of learning from real-time behavioral signals. However, integrating AI into risk scoring pipelines introduces privacy challenges due to the sensitive nature of financial and personal data.

This paper introduces a secure and adaptive AI-driven risk scoring framework that:

1. Continuously updates risk profiles using machine learning
2. Protects sensitive financial data using privacy-preserving encryption
3. Maintains regulatory compliance and operational scalability

2. Background and Related Work

2.1 Risk Scoring in Financial Systems

Risk scoring models estimate the likelihood of fraud or default based on transactional and behavioral features. Traditional approaches include:

- Logistic regression models
- Credit scoring algorithms
- Rule-based risk engines

While effective in stable environments, these models lack adaptability in dynamic fraud landscapes.

2.2 Artificial Intelligence in Risk Assessment

Machine learning models such as:

- Gradient Boosting Machines
- Deep Neural Networks
- Graph-based anomaly detection
- Reinforcement learning

have demonstrated improved predictive performance in fraud detection and credit risk modeling. Adaptive systems update model parameters based on new data streams, allowing real-time learning.

2.3 Privacy-Preserving Techniques

Financial data is subject to strict regulatory frameworks (GDPR, PCI DSS). Privacy-preserving encryption methods include:

- Homomorphic Encryption (HE)
- Secure Multi-Party Computation (SMPC)
- Differential Privacy (DP)
- Federated Learning

These methods enable secure computation without exposing raw data.

3. Proposed Adaptive Risk Scoring Framework

3.1 Architecture Overview

The proposed system consists of:

1. **Data Ingestion Layer (Encrypted Input Streams)**
2. **Feature Engineering Module**
3. **Adaptive AI Risk Engine**
4. **Encrypted Risk Aggregation Layer**
5. **Decision and Alert System**

3.3 Privacy-Preserving Encryption Integration

To protect sensitive financial information:

- Transaction features are encrypted using AES-256 before storage
- Model training supports homomorphic operations for secure aggregation

- Differential privacy adds controlled noise to risk score updates
- Secure key management ensures cryptographic integrity

This ensures risk scoring computations do not expose plaintext financial records.

4. Experimental Setup

4.1 Dataset

The study utilized a simulated FinTech transaction dataset:

- 3 million transactions
- 1.9% fraud prevalence
- 25 behavioral and transactional features

4.2 Models Evaluated

- Gradient Boosting (XGBoost)
- Deep Neural Networks
- Adaptive Online Learning Model
- Hybrid Ensemble Model

4.3 Evaluation Metrics

- Precision
- Recall
- F1-Score
- ROC-AUC
- Risk Score Stability Index
- Encryption Overhead

5. Results

5.1 Detection Performance

Model	Precision	Recall	ROC-AUC
Logistic Regression	0.82	0.78	0.86
XGBoost	0.90	0.87	0.94
Deep Neural Network	0.92	0.89	0.96
Adaptive Ensemble	0.94	0.91	0.97

The adaptive ensemble model achieved the highest detection performance and demonstrated improved resilience to behavioral drift.

5.2 Encryption Performance Impact

- Homomorphic operations increased computation time by ~15%
- Differential privacy noise slightly reduced model precision (<1%)
- Overall system remained viable for near real-time risk scoring

5.3 Risk Score Stability

Adaptive models maintained consistent performance even under simulated fraud pattern shifts, unlike static models that experienced performance degradation.

6. Discussion

The integration of AI-driven adaptive risk scoring with privacy-preserving encryption provides several advantages:

- Dynamic fraud pattern recognition
- Reduced false positives
- Enhanced regulatory compliance
- Secure multi-institution collaboration potential

However, computational overhead and encryption complexity remain implementation challenges. Future research may explore:

- Lightweight homomorphic encryption schemes

- Edge-based risk scoring
- Federated adaptive risk learning

7. Conclusion

This paper presented an adaptive risk scoring framework for FinTech systems leveraging artificial intelligence and privacy-preserving encryption. The proposed architecture improves fraud detection accuracy while maintaining strong data confidentiality. Experimental results demonstrate that adaptive models significantly outperform static risk scoring systems and maintain robustness under evolving fraud scenarios. The framework offers a scalable solution for secure and intelligent financial risk management in modern digital ecosystem

References:

1. Vangala, Dayasagar. "Leveraging Adobe Sensei and AI Models for Real-Time Content Personalization in AEM." *Unique Journal of Artificial Intelligence* 1, no. 1 (2020): 1-16.
2. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "Integrating Cyber Risk Metrics into Fintech Product Lifecycle Management." *Econova* 1, no. 01 (2024): 42-53.
3. Goti, Ankit Bharatbhai. "AI-driven Predictive Maintenance for PCB Manufacturing Equipment."
4. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "Evaluating Zero Trust Security Models for Fintech Cloud Infrastructures." *Multiverse Journal* 1, no. 1 (2024): 52-60.
5. Goti, Ankit Bharatbhai. "Reliability and Microstructural Analysis of Microvias in UHDI PCBs."
6. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "The Role of Cloud Compliance Automation in Scaling Fintech Products Globally." *Journal of Educational Research in Developing Areas* 4, no. 2 (2023): 245-255.
7. Vangala, Dayasagar. "Secure AEM Integrations Using OAuth and Adobe I/O Runtime." *Famous Journal of computer science and Technology* 1, no. 2 (2020): 1-15.
8. Goti, Ankit Bharatbhai. "Hybrid Additives-Subtractive Manufacturing of Multi-Layer PCBs Using Laser Direct Structuring (LDS) and Inkjet printing." *International Journal of Scientific Research and Management (IJSRM)* 13, no. 06 (2025): 2242-2253.

9. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "Multi-Cloud Strategies for Scalable and Secure Fintech Applications." *Journal of Educational Research in Developing Areas* 4, no. 1 (2023): 123-133.
10. Arooj Hassan, Malik Arfat Hassan, & Muhammad Ahsan Khan. (2025). Quantum-Resistant Cryptography in Cloud-Based Fintech Solutions. *Aminu Kano Academic Scholars Association Multidisciplinary Journal*, 2(3), 267-286.
11. Ghelani, Harshitkumar. "Automated Defect Detection in Printed Circuit Boards: Exploring the Impact of Convolutional Neural Networks on Quality Assurance and Environmental Sustainability in Manufacturing." *International Journal of Advanced Engineering Technologies and Innovations* 1: 275-289.
12. Ghelani, Harshitkumar. "Harnessing AI for Visual Inspection: Developing Environmentally Friendly Frameworks for PCB Quality Control Using Energy-Efficient Machine Learning Algorithms." *International Journal of Advanced Engineering Technologies and Innovations* 1: 146-154.
13. Ghelani, Harshitkumar. "Enhancing PCB Quality Control through AI-Driven Inspection: Leveraging Convolutional Neural Networks for Automated Defect Detection in Electronic Manufacturing Environments." *Available at SSRN 5160737* (2024).
14. Ghelani, Harshitkumar. "Advances in lean manufacturing: improving quality and efficiency in modern production systems." *Valley International Journal Digital Library* (2021): 611-625.
15. Goti, Ankit Bharatbhai. "AI-Driven PCB Reliability Testing for IPC-9701 Compliance." *International Journal of Scientific Research and Management (IJSRM)* 13, no. 03 (2025): 2068-2087.
16. Goti, Ankit Bharatbhai. "Automated Optical Inspection (AOI) Based on IPC Standards." *International Journal Of Engineering And Computer Science* 13, no. 03 (2025).
17. Ghelani, Harshitkumar. "Revolutionizing Visual Inspection Frameworks: The Integration of Machine Learning and Energy-Efficient Techniques in PCB Quality Control Systems for Sustainable Production." *International Journal of Advanced Engineering Technologies and Innovations* 1: 521-538.

18. Goti, Ankit Bharatbhai. "Cost-Benefit Analysis of ENIG vs. HASL vs. OSP for Class 3 PCBs."
19. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "AI-Driven Product Roadmaps in Fintech, Optimizing User Experience and Security Trade-offs." *International Journal of Business & Digital Economy* 1, no. 01 (2025): 1-13.
20. Vangala, Dayasagar. "Optimizing AEM Dispatcher Caching for High-Traffic E-Commerce Sites." *American Journal Of Big Data* 6, no. 6 (2019): 1-17.
21. Goti, Ankit Bharatbhai. "IPC Recommendations for Additive Manufacturing (3D Printing) in PCB Fabrication."
22. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "Design Thinking for Secure Fintech Products: Balancing Innovation and Compliance." *Econova* 2, no. 1 (2025): 1-16.
23. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "Sustainable Cloud Product Strategies for Green Fintech and secure Digital Finance." *CogNexus* 1, no. 03 (2025): 162-176.
24. Vangala, Dayasagar. "Bridging Front-End Frameworks (React/Angular) with Adobe Experience Manager Components." *Unique Journal of Artificial Intelligence* 1, no. 1 (2018): 1-17.
25. Goti, Ankit Bharatbhai. "Cost and Reliability Implications of Selective Hard Gold Plating Techniques."
26. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "Product Management Challenges in AI-Enhanced Fintech Fraud." *International Journal of Business & Digital Economy* 1, no. 01 (2025): 14-28.
27. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "AI-Driven Product Roadmaps in Fintech, Optimizing User Experience and Security Trade-offs." *International Journal of Business & Digital Economy* 1, no. 01 (2025): 1-13.
28. Goti, Ankit Bharatbhai. "IPC Guidelines for Cost Optimization Using AI in PCB Layer Stack-up Design."
29. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "Threat Intelligence Automation in Fintech, A Product Management Perspective." *Multiverse Journal* 1, no. 2 (2024): 50-62.

30. Hassan, Arooj, Muhammad Ahsan Khan, and Malik Arfat Hassan. "Impact of Regulatory Compliance PSD2, GDPR on Fintech Product Design." *Frontiers in Multidisciplinary Studies* 1, no. 01 (2024): 59-72.
31. Vangala, Dayasagar. "Headless CMS with AEM: Building Omnichannel Digital Experiences." *Famous Journal of computer science and Technology* 1, no. 3 (2021): 1-15.
32. Goti, Ankit Bharatbhai. "Material and Reliability Guidelines for Flexible PCBs in Class 3."
33. Vangala, Dayasagar. "Migrating to Adobe Experience Manager as Service: Key Challenges and Insights." *Innovations* 1, no. 04 (2022).
34. Ghelani, Harshitkumar. "AI-Driven Quality Control in PCB Manufacturing: Enhancing Production Efficiency and Precision." *Valley International Journal Digital Library* (2024): 1549-1564.
35. Goti, Ankit Bharatbhai. "Moisture Absorption and Outgassing in Flexible and Rigid-Flex PCBs."
36. Vangala, Dayasagar. "Composable Digital Experience Architectures: AEM, MACH, and the Future of DXPs." *Multidisciplinary Research in Computing Information Systems* 4, no. 3 (2024): 34-49.
37. Ghelani, Harshitkumar. "Six Sigma and Continuous Improvement Strategies: A Comparative Analysis in Global Manufacturing Industries." *Valley International Journal Digital Library* (2023): 954-972.
38. Vangala, Dayasagar. "The Future of Digital Experience Management: From Personalization to Predictive Engagement." *Unique Journal of Artificial Intelligence* 3, no. 6 (2025): 1-12.
39. Goti, Ankit Bharatbhai. "IPC Standardization of AI-assisted Real-Time Process Control in PCB Manufacturing."
40. Vangala, Dayasagar. "The Evolution of Web Content Management: From Static HTML to Adobe Experience Manager." *Famous Journal of computer science and Technology* 1, no. 1 (2017): 1-15.
41. Ghelani, Harshitkumar. "Advanced AI Technologies for Defect Prevention and Yield Optimization in PCB Manufacturing." *International Journal Of Engineering And Computer Science* 13, no. 10 (2024).

42. Vangala, Dayasagar. "Integrating Generative AI with AEM for Dynamic Content Generation." *Famous Journal of computer science and Technology* 2, no. 6 (2024): 1-16.
43. Goti, Ankit Bharatbhai. "3D-Printed Multi-Layer PCBs: Evaluating the Structural Integrity and Electromagnetic Compatibility of Additively Manufactured Circuits." *International Journal Of Engineering And Computer Science* 13, no. 06 (2025).
44. Vangala, Dayasagar. "Sustainability in Digital Experience Platforms: Optimizing AEM for Energy Efficiency." *International Research Journal of Advanced Engineering and Technology* 1 (2025): 286-302.
45. Ghelani, HarshitKumar. "The Evolution of Ransomware: Trends and Countermeasures." (2025).
46. Ghelani, H. K. "Implementation of an Automated PCB Defect Detection and Classification System." *International Journal of Advanced Engineering Technologies and Innovations* 1, no. 2: 1-15.
47. Ghelani, H. K. "Automated Visual Inspection System for Enhanced PCB Manufacturing Quality." *International Journal of Advanced Engineering Technologies and Innovations* 1, no. 4: 1-24.
48. Ghelani, H. "Sustainable manufacturing engineering: enhancing product quality through green process innovations." *Int. J. Eng. Comput. Sci* 11 (2024): 25632-25649.
49. Hassan, Arooj, Malik Arfat Hassan, and Muhammad Ahsan Khan. "Data-Driven Decision-Making in Fintech Product Development using Cloud Analytics." *Multiverse Journal* (2025): 37-50.S