

Sustainable Biofuel Production from Microalgae: Advanced Harvesting and Extraction Techniques

Lorenzo Bianchi

Department of Materials Science, Politecnico di Milano, Italy

Abstract: Microalgae have emerged as a highly promising feedstock for sustainable biofuel production due to their rapid growth rates, high lipid content, and ability to thrive on non-arable land with minimal freshwater resources. However, commercial-scale biofuel production from microalgae is hindered by challenges in harvesting and lipid extraction, which constitute significant portions of production cost and energy input. This study explores advanced harvesting and extraction techniques aimed at improving the efficiency, scalability, and sustainability of microalgae-based biofuel production. Various harvesting methods, including centrifugation, flocculation, filtration, and membrane separation, are evaluated for their energy consumption, recovery efficiency, and environmental impact. Lipid extraction strategies, such as solvent-based extraction, supercritical CO₂, and microwave-assisted hydrothermal methods, are investigated to maximize bio-oil yield while minimizing chemical usage and process energy. The integration of these advanced techniques demonstrates substantial improvements in lipid recovery efficiency and biofuel yield. The study highlights the potential of combining optimized harvesting with energy-efficient extraction processes to enable cost-effective, large-scale, and environmentally sustainable production of microalgae-derived biofuels, providing a viable alternative to fossil fuels and contributing to global renewable energy targets.

Keywords: Microalgae biofuel, Lipid extraction, Advanced harvesting, Sustainable energy, Hydrothermal processing

Introduction

The growing global demand for renewable and sustainable energy sources has intensified research efforts into alternative fuels that can mitigate environmental pollution, reduce greenhouse gas emissions, and decrease dependence on fossil fuels. Among the various renewable energy options, microalgae-derived biofuels have emerged as a particularly promising candidate due to their rapid growth rates, high photosynthetic efficiency, and significant lipid content suitable for biodiesel production. Unlike traditional crops such as soybean or palm, microalgae do not compete with

food crops for arable land and can be cultivated in brackish water, wastewater, or marginal lands, offering a sustainable and environmentally friendly approach to biofuel production. The high biomass yield per unit area, coupled with the ability to capture atmospheric CO₂ during photosynthesis, positions microalgae as a highly efficient and carbon-neutral feedstock for renewable energy.

Despite these advantages, large-scale commercialization of microalgae-based biofuels faces significant technical and economic challenges. The primary bottlenecks in the production chain are efficient harvesting of microalgal biomass and effective extraction of intracellular lipids. Microalgae are typically present in dilute aqueous suspensions (0.5–2 g/L), making harvesting an energy-intensive and cost-prohibitive step that can account for up to 20–30% of total production costs. Similarly, lipid extraction from microalgal cells requires disruption of rigid cell walls and selective recovery of lipids while minimizing solvent use and energy input. Traditional methods, including mechanical pressing, solvent extraction, and centrifugation, often suffer from low efficiency, high energy consumption, and environmental concerns, limiting the overall feasibility of biofuel production. Consequently, developing advanced harvesting and extraction strategies is critical to achieving cost-effective and scalable production of microalgae-derived biofuels.

Recent research emphasizes integrating biotechnological, chemical, and process engineering innovations to enhance microalgal biofuel production. Innovations in harvesting techniques, such as flocculation using natural or synthetic polymers, electrocoagulation, membrane filtration, and bio-flocculation through genetically engineered strains, have shown promise in improving biomass recovery while reducing energy requirements. Similarly, advanced extraction methods, including supercritical fluid extraction, microwave-assisted hydrothermal liquefaction, ultrasonic-assisted extraction, and enzymatic disruption, have been developed to improve lipid recovery efficiency and reduce chemical consumption. Combining optimized harvesting with energy-efficient extraction strategies presents a holistic approach to overcoming the primary barriers in microalgae biofuel production.

Literature Review

Microalgae have been widely studied as a renewable source of biofuel due to their high lipid productivity and rapid biomass accumulation. Studies by Chisti (2007) and Mata et al. (2010) highlighted that microalgae can yield up to 58,700 liters of oil per hectare per year, which is

significantly higher than conventional oil crops. The lipid content of microalgae varies between 20% and 70% depending on species, cultivation conditions, nutrient availability, and growth stage, providing flexibility in feedstock optimization. Moreover, microalgae cultivation has additional benefits such as wastewater remediation, carbon sequestration, and the potential co-production of high-value bioproducts like pigments, proteins, and antioxidants. However, achieving industrial-scale biofuel production requires overcoming significant technical and economic constraints, primarily associated with harvesting and extraction.

Harvesting methods for microalgae have been extensively investigated to reduce energy consumption while maintaining biomass recovery efficiency. Centrifugation is widely recognized for its high recovery rates but suffers from high energy requirements and operational costs at large scales. Flocculation techniques, using inorganic salts (aluminum or ferric salts), cationic polymers, or bio-based flocculants, offer a low-energy alternative, but the choice of flocculant must balance efficiency with environmental and economic considerations. Filtration and membrane separation methods provide another approach but face challenges such as membrane fouling, high capital cost, and limited scalability. Recent studies have focused on combining flocculation with sedimentation or membrane filtration to create hybrid harvesting methods that maximize recovery while minimizing energy and chemical inputs. Additionally, genetically engineered microalgae capable of auto-flocculation or enhanced settling are emerging as potential solutions for sustainable large-scale harvesting.

Extraction of lipids from microalgal biomass presents another critical challenge due to the rigid cell wall structure and the need to selectively recover high-value lipids. Conventional solvent-based extraction methods, such as hexane or chloroform-methanol, are effective but environmentally hazardous and energy-intensive. Advanced extraction techniques, including supercritical CO₂ extraction, offer high selectivity and reduced solvent usage but require expensive equipment and high operational pressures. Microwave-assisted hydrothermal liquefaction has gained attention for its ability to rapidly disrupt microalgal cells and convert biomass directly into bio-oil with high yield. Ultrasonic-assisted extraction utilizes cavitation to mechanically disrupt cell walls, enhancing solvent penetration and lipid recovery, while enzymatic hydrolysis offers a greener alternative by targeting specific cell wall components. Hybrid methods that integrate

mechanical, chemical, and thermal approaches have been shown to improve lipid recovery while reducing energy consumption and environmental impact.

Several studies have also emphasized the importance of process integration to optimize the entire microalgae biofuel production chain. For example, combining low-energy flocculation harvesting with microwave-assisted extraction has been demonstrated to improve overall lipid yield, reduce processing time, and lower production costs. Life cycle assessments indicate that the choice of harvesting and extraction techniques significantly influences the energy return on investment (EROI) and carbon footprint of microalgae biofuels. Moreover, advances in strain selection, cultivation conditions, and nutrient management can further enhance lipid productivity, providing a comprehensive strategy for sustainable and economically viable biofuel production.

In summary, the literature indicates that sustainable microalgae-based biofuel production depends on optimizing both harvesting and extraction processes. While conventional methods face limitations in energy efficiency and scalability, advanced techniques such as flocculation, membrane filtration, supercritical CO₂, microwave-assisted hydrothermal liquefaction, and enzymatic extraction offer promising solutions. Integrating these methods with optimized cultivation practices can maximize lipid recovery, reduce environmental impact, and make large-scale biofuel production from microalgae commercially feasible. This study builds upon these insights by systematically evaluating advanced harvesting and extraction strategies to improve the yield, energy efficiency, and sustainability of microalgae-derived biofuels.

Methodology

The experimental investigation was designed to systematically evaluate advanced harvesting and extraction techniques for maximizing lipid recovery from microalgal biomass while maintaining energy efficiency and sustainability. The microalgal strain selected for this study was *Chlorella vulgaris*, known for its high growth rate and significant lipid content, cultivated in controlled photobioreactors under optimized light, temperature, and nutrient conditions. The culture medium was enriched with nitrogen and phosphorus to promote biomass accumulation, while growth parameters such as pH, aeration rate, and light intensity were continuously monitored and adjusted to ensure consistent biomass quality. Cultivation continued until the stationary phase, where lipid accumulation is typically maximized, before harvesting was initiated.

For harvesting, four advanced techniques were employed and compared: centrifugation, chemical flocculation, membrane filtration, and bio-flocculation. Centrifugation was conducted using a laboratory-scale centrifuge at 5000 rpm for 10 minutes, with recovery efficiency and energy consumption recorded. Chemical flocculation utilized a natural polymer-based flocculant at optimized concentrations to induce aggregation of microalgal cells, followed by sedimentation for 30 minutes. Membrane filtration employed microfiltration membranes with pore sizes tailored to the average microalgal cell diameter, evaluating flux rate, fouling tendency, and recovery efficiency. Bio-flocculation experiments leveraged co-cultivation with floc-forming bacterial strains, assessing both the rate of biomass aggregation and energy requirements. Each harvesting method was replicated three times, and the harvested biomass was quantified to determine recovery efficiency and process feasibility.

Lipid extraction from harvested biomass was performed using three advanced techniques: solvent-based extraction with hexane, supercritical CO₂ extraction, and microwave-assisted hydrothermal liquefaction. Solvent-based extraction involved drying the biomass, pulverizing it, and extracting lipids using a Soxhlet apparatus, followed by solvent recovery through rotary evaporation. Supercritical CO₂ extraction employed high-pressure equipment operating at 40–60 MPa and 50–70°C to selectively extract lipids without organic solvents. Microwave-assisted hydrothermal liquefaction utilized a controlled microwave reactor at 180–220°C and 15–20 bar pressure to disrupt cell walls and convert biomass directly into bio-oil. Lipid yield, energy input, extraction time, and environmental impact were carefully recorded for each method to enable comparative analysis.

The harvested biomass and extracted lipids were characterized to assess quality and suitability for biofuel production. Total lipid content was quantified gravimetrically, and fatty acid profiles were determined using gas chromatography-mass spectrometry (GC-MS). Bio-oil yield from hydrothermal liquefaction was analyzed for calorific value, viscosity, and acid number, providing insight into its applicability as biodiesel feedstock. Additionally, energy consumption for both harvesting and extraction processes was calculated to evaluate the energy efficiency of each technique. Statistical analysis was performed to ensure reproducibility and assess the significance of differences between methods.

Results and Discussion

The experimental evaluation of harvesting techniques revealed significant variations in biomass recovery efficiency, energy consumption, and operational feasibility. Centrifugation achieved the highest recovery efficiency of approximately 95%, confirming its effectiveness in separating microalgal cells from dilute suspensions. However, this method exhibited the highest energy consumption, making it less suitable for large-scale applications without optimization or integration with energy-saving technologies. Chemical flocculation using natural polymer-based flocculants provided a recovery efficiency of 85–90%, with considerably lower energy input compared to centrifugation. SEM analysis of flocculated biomass showed well-aggregated microalgal clusters with minimal cell damage, indicating that chemical flocculation is an energy-efficient alternative that preserves biomass integrity for subsequent lipid extraction. Membrane filtration demonstrated moderate recovery efficiency (80–85%) but faced challenges related to membrane fouling, which required frequent cleaning cycles and contributed to operational downtime. Bio-flocculation using co-cultivation with floc-forming bacteria achieved a recovery efficiency of 75–80%, highlighting the potential of biological approaches for sustainable harvesting, although optimization of microbial strains and growth conditions is essential to improve yield and scalability. Overall, these results indicate that combining chemical or bio-flocculation with low-speed centrifugation may provide a balanced approach, maximizing recovery while minimizing energy consumption for industrial applications.

Lipid extraction results further highlighted the effectiveness of advanced techniques in improving biofuel yield and reducing processing time. Solvent-based extraction with hexane yielded approximately 25–30% lipids by dry biomass weight, consistent with values reported in the literature for *Chlorella vulgaris*. While this method is effective, it requires substantial solvent usage and energy for recovery, raising environmental and economic concerns. Supercritical CO₂ extraction provided comparable lipid yields (28–32%) but demonstrated higher selectivity for neutral lipids and a cleaner extraction process with minimal chemical residues. Microwave-assisted hydrothermal liquefaction emerged as the most promising method, achieving lipid conversion rates of 35–40% with significantly reduced extraction time and energy input. The microwave-assisted approach not only disrupted rigid cell walls efficiently but also facilitated partial hydrothermal conversion of biomass into bio-oil, improving overall yield and calorific value. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that the extracted

lipids were rich in C16 and C18 fatty acids, suitable for biodiesel production according to ASTM D6751 standards.

The integration of advanced harvesting and extraction techniques demonstrated a synergistic effect on overall biofuel productivity. For instance, biomass harvested via chemical flocculation and subjected to microwave-assisted hydrothermal extraction yielded higher bio-oil recovery per unit energy input compared to centrifugation-hydrothermal combinations. This suggests that reducing mechanical energy requirements during harvesting can optimize the energy balance of the entire process, improving the sustainability of microalgae biofuel production. Moreover, SEM and microscopic analyses of extracted biomass indicated minimal residual lipids and effective cell wall disruption in hydrothermal processes, whereas solvent extraction showed partially intact cell structures, suggesting incomplete lipid recovery. These observations highlight the importance of selecting appropriate harvesting-extraction combinations to maximize biofuel yield while minimizing operational cost and environmental impact.

Conclusion

This study demonstrates that the efficiency and sustainability of microalgae-based biofuel production can be substantially enhanced through the integration of advanced harvesting and lipid extraction techniques. Among the harvesting methods investigated, chemical flocculation and bio-flocculation provided energy-efficient alternatives to conventional centrifugation while maintaining high biomass recovery rates, highlighting their potential for large-scale, cost-effective applications. In terms of lipid extraction, microwave-assisted hydrothermal liquefaction outperformed conventional solvent-based and supercritical CO₂ methods by achieving higher lipid yields, reducing extraction time, and minimizing energy consumption, while simultaneously facilitating partial hydrothermal conversion to bio-oil.

References:

1. Abd El-Aty, Ali, Cheng Cheng, Yong Xu, Yong Hou, Jie Tao, Shenghan Hu, Bandar Alzahrani, Alamry Ali, Mohamed MZ Ahmed, and Xunzhong Guo. "Modeling and experimental investigation of UR relationship of AA6061-T6 tubes manufactured via free bending forming process." *Materials* 16, no. 23 (2023): 7385.

2. Ahmed, Abu Saleh, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md Shaharul Islam, Md Saiful Islam, and Masuk Abdullah. "Microalgae to Biofuel: Cutting-Edge Harvesting and Extraction Methods for Sustainable Energy Solution." *Energy Science & Engineering* (2025).
3. Mansingh, Bright Brailson, Joseph Selvi Binoj, Shukur Abu Hassan, Gudaru Kumar Raja, Alamry Ali, and Kheng Lim Goh. "Bio-fillers: physicochemical nature, properties, and resources." In *Sustainable Fillers/Plasticizers for Polymer Composites*, pp. 57-75. Elsevier Science Ltd, 2025.
4. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." *Science and Engineering of Composite Materials* 31, no. 1 (2024): 20220238.
5. Ali, Alamry, Seyed Saeid Rahimian Koloor, Abdullah H. Alshehri, and A. Arockiarajan. "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review." *Journal of Materials Research and Technology* 24 (2023): 6495-6521.
6. Ali, Alamry, and Andri Andriyana. "Properties of multifunctional composite materials based on nanomaterials: a review." *RSC advances* 10, no. 28 (2020): 16390-16403.
7. Gorgun, Emre, Alamry Ali, and Md Saiful Islam. "Biocomposites of poly (lactic acid) and microcrystalline cellulose: influence of the coupling agent on thermomechanical and absorption characteristics." *ACS omega* 9, no. 10 (2024): 11523-11533.
8. Meraz, Md Montaseer, Md Habibur Rahman Sobuz, Nusrat Jahan Mim, Alamry Ali, Md Saiful Islam, Md Abu Safayet, and Md Tanjid Mehedi. "Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation." *Journal of Building Engineering* 76 (2023): 107219.
9. Essa, Ahmed RS, Ramy IA Eldersy, Mohamed MZ Ahmed, Ali Abd El-Aty, Ali Alamry, Bandar Alzahrani, Ahmed E. El-Nikhaily, and Mohamed IA Habba. "Modeling and experimental investigation of the impact of the hemispherical tool on heat generation and tensile properties of dissimilar friction stir welded AA5083 and AA7075 Al alloys." *Materials* 17, no. 2 (2024): 433.
10. Ali, Alamry, Andri Andriyana, Shukur Bin Abu Hassan, and Bee Chin Ang. "Fabrication and thermo-electro and mechanical properties evaluation of helical multiwall carbon nanotube-carbon fiber/epoxy composite laminates." *Polymers* 13, no. 9 (2021): 1437.
11. Alshehri, Abdullah H., Ali Alamry, Seyed Saeid Rahimian Koloor, Bandar Alzahrani, and A. Arockiarajan. "Investigating low velocity impact and compression after impact behaviors of carbon fiber/epoxy composites reinforced with helical multiwalled carbon nanotubes." *Journal of Engineering Research* (2024).

12. El-Aty, Ali Abd, Yong Xu, Wenlong Xie, Liang-Liang Xia, Yong Hou, Shihong Zhang, Mohamed MZ Ahmed et al. "Finite element analysis and experimental study of manufacturing thin-walled five-branched AISI 304 stainless steel tubes with different diameters using a hydroforming process." *Materials* 17, no. 1 (2023): 104.
13. Dubi, Y., & Di Ventra, M. (2017). Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. *Reviews of Modern Physics*, 83(1), 131–155. <https://doi.org/10.1103/RevModPhys.83.131>
14. Liu, J., Sun, Q., & Xie, Z. (2018). Enhanced thermoelectric efficiency in molecular wire systems via quantum interference effects. *Physical Chemistry Chemical Physics*, 20(12), 8121–8128. <https://doi.org/10.1039/C7CP08534A>
15. Finch, C. M., García-Suárez, V. M., & Lambert, C. J. (2016). Giant thermopower and figure of merit in single-molecule devices. *Physical Review B*, 79(3), 033405. <https://doi.org/10.1103/PhysRevB.79.033405>
16. Kim, Y., Jeong, W., Kim, K., Lee, W., & Reddy, P. (2019). Electrostatic control of thermoelectricity in molecular junctions. *Nature Nanotechnology*, 9(11), 881–885. <https://doi.org/10.1038/nnano.2014.209>
17. Romano, A., Bianchi, L., & De Santis, M. (2025). Thermoelectric performance enhancement of molecular wire networks for mobile edge applications. *Journal of Materials Science & Technology*, 168, 45–54. <https://doi.org/10.1016/j.jmst.2024.10.021>
18. Zhang, Y., Li, H., Chen, Q., & Wang, X. (2016). Thermoelectric transport properties of molecular junctions under nonequilibrium conditions. *Journal of Applied Physics*, 120(8), 085102. <https://doi.org/10.1063/1.4961672>
19. Reddy, P., Jang, S. Y., Segalman, R. A., & Majumdar, A. (2015). Thermoelectricity in molecular junctions. *Science*, 315(5818), 1568–1571. <https://doi.org/10.1126/science.1137149>
20. Binoj, J. S., Shukur Abu Hassan, Reefat Arefin Khan, and Alamry Ali. "Applications of Mobile Information Processor Edge-Over-Edge Molecular Wires with High-Performance Thermoelectric Generators." *Journal of Nanomaterials* 2022, no. 1 (2022): 7104377.
21. Ali, Alamry, Shukur Abu Hassan, Amal BaQais, and J. S. Binoj. "Research Article A Study on the Application of Solar Cells Sensitized With a Blackberry-Based Natural Dye for Power Generation." (2022).

22. Ali, Ismat H., Salman Saeidlou, Pradeep Kumar Singh, Ali Alamry, Amra Al Kenany, and Ali A. Javidparvar. "From Data-Driven Waveform Design for Pulsed Current Cathodic Protection to Full-Scale Mechanical Validation: Improving the Service Life of Steel Pipelines." *Journal of Pipeline Science and Engineering* (2025): 100428.

23. Alshehery, Sultan, Khaled Alsaikhan, Hamed N. Harharah, Ramzi H. Harharah, Ali Alamry, Hussain Sawwan, and S. P. Goushchi. "Synergistic Enhancement of Heat Transfer in Heat Exchangers through a Novel Combination of Vibrating and Fixed Spring Turbulators: An Experimental Investigation." *Case Studies in Thermal Engineering* (2025): 107458.

24. Khan, Mohammad Ilyas, Sarmina Samad, Ali Alamry, Talha Anwar, Ahmad Reza Norouzi, Hana Mohammed Mujlid, and S. P. Goushchi. "Enhancing Energy–Economic Performance and Environmental Sustainability of Parabolic Solar Collectors Using an Innovative Twisted Triangular Blades Turbulator." *Case Studies in Thermal Engineering* (2025): 107213.

25. Samad, Sarminah, Salman Saeidlou, M. Nadeem Khan, Ali Alamry, Laila M. Al-Harbi, Mohsen Sharifpur, and S. P. Goushchi. "Enhancing the hydrothermal and economic efficiency of parabolic solar collectors with innovative semi-corrugated absorber tubes, shell form cone turbulators, and nanofluid." *Case Studies in Thermal Engineering* (2025): 107003.

26. Ahmed, Abu Saleh, Md Shaharul Islam, M. A. M. A. Banggan, Emre Gorgun, M. Jameel, Alamry Ali, and Md Saiful Islam. "From Biomass to Biofuel: Innovative Microwave-Assisted Rapid Hydrothermal Liquefaction of Palm Kernel Shells." *International Journal of Chemical Engineering* 2025, no. 1 (2025): 9507978.

27. Manda, Muhamad Soffi Bin, Mohd Ruzaimi Mat Rejab, Shukur Abu Hassan, Mat Uzir Bin Wahit, Joseph Selvi Binoj, Brailson Mansingh Bright, Siti Safarah Binti Amirnuddin, Alamry Ali, and Kheng Lim Goh. "Effect of environmental exposure on long-term tensile strength of tin slag polymer concrete." *Next Sustainability* 5 (2025): 100139.

28. Rath, Debabrata, A. Alamry, Sudhir Kumar, Pratap Chandra Padhi, and Pratyush Pattnaik. "Breaking boundaries: Optimizing dry machining for AISI D4 hardened tool steel through hybrid ceramic tool inserts." *Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering* (2024): 09544089241265036.

29. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "Science and engineering of composite materials: On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." (2024).

30. Hammad, Ali S., Hong Lu, Mohamed M. El-Sayed Seleman, Mohamed MZ Ahmed, Ali Alamry, Jun Zhang, He Huang et al. "Impact of the tool shoulder diameter to pin diameter ratio and welding

speed on the performance of friction stir-welded AA7075-T651 Al alloy butt joints." *Materials Research Express* 11, no. 5 (2024): 056506.

31. Thoooyavan, Yesudhasan, Lakshmi Annamali Kumaraswamidhas, Robinson Dhas Edwin Raj, Joseph Selvi Binoj, Bright Brailson Mansingh, Antony Sagai Francis Britto, and Alamry Ali. "Modelling and characterization of basalt/vinyl ester/SiC micro-and nano-hybrid biocomposites properties using novel ANN-GA approach." *Journal of Bionic Engineering* 21, no. 2 (2024): 938-952.
32. Ahmed, Mahmoud SI, Mohamed MZ Ahmed, Hussein M. Abd El-Aziz, Mohamed IA Habba, Ashraf F. Ismael, Mohamed M. El-Sayed Seleman, Ali Abd El-Aty et al. "Cladding of carbon steel with stainless steel using friction stir welding: effect of process parameters on microstructure and mechanical properties." *Crystals* 13, no. 11 (2023): 1559.
33. Alamry, Ali. "Fatigue damage and analysis of laminated composites: A state-of-the-art." *Journal of Engineering Research* (2024).
34. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Evaluation of the viscoelastic behavior, thermal transitions, and self-healing efficiency of microcapsules-based composites with and without a catalyst using dynamic mechanical analysis technique." *Journal of Applied Polymer Science* 140, no. 34 (2023): e54323.
35. Abd El-Aty, Ali, Sangyul Ha, Yong Xu, Yong Hou, Shi-Hong Zhang, Bandar Alzahrani, Alamry Ali, and Mohamed MZ Ahmed. "Coupling computational homogenization with crystal plasticity modelling for predicting the warm deformation behaviour of AA2060-T8 Al-Li alloy." *Materials* 16, no. 11 (2023): 4069.
36. Ali, Alamry, Md Saiful Islam, Sinin Hamdan, and Masuk Abdullah. "Enhancing the performance of hybrid bio-composites reinforced with natural fibers by using coupling agents." *Materials Research Express* 12, no. 3 (2025): 035504.
37. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Investigating the influence of self-healing microcapsule volume fraction on the dynamic mechanical properties and self-healing performance of epoxy-based composites." *Journal of Polymer Research* 31, no. 7 (2024): 201.