

Fracture Mechanics of Recycled Nanocomposite Structural Materials**Sarah Brown****Materials Science and Engineering, University of Sydney, Australia, Sydney**

Abstract: The increasing demand for sustainable materials has propelled the development of recycled nanocomposites for structural applications. These materials, incorporating recycled polymers or metals reinforced with nanoparticles, offer environmental benefits alongside mechanical enhancements. However, their fracture behavior remains a critical concern, influenced by recycling-induced defects, nanoparticle dispersion, and matrix-filler interactions. This paper examines the fracture mechanics of such materials, focusing on crack initiation, propagation, and toughening mechanisms. Through analytical models and simulations, we assess the impact of recycling processes on fracture toughness, fatigue resistance, and failure modes. Findings indicate that optimized nanoparticle alignment and interfacial modifications can mitigate degradation from recycling, achieving toughness comparable to virgin composites. The study provides guidelines for designing durable recycled nanocomposites, advancing eco-friendly structural engineering.

Keywords: Fracture mechanics, Recycled nanocomposites, Structural materials, Toughness, Crack propagation, Sustainability

1. Introduction

The global push towards sustainability has highlighted the need for recycled materials in structural applications, where high performance is essential. Nanocomposites, blending matrices like polymers or metals with nanoscale fillers such as carbon nanotubes, graphene, or silica, exhibit superior strength-to-weight ratios and durability. Recycling these materials reduces waste and resource consumption, but introduces challenges in maintaining mechanical integrity, particularly in fracture mechanics.

Fracture in nanocomposites arises from stress concentrations at defects, interfaces, or agglomerates. In recycled variants, impurities from prior use, thermal degradation during reprocessing, and poor filler dispersion exacerbate these issues, leading to reduced fracture toughness and premature failure. Understanding these mechanisms is vital for applications in

aerospace, automotive, and construction, where recycled materials could replace virgin ones without compromising safety.

This research integrates fracture theories with experimental insights to analyze recycled nanocomposites. We consider polymer-based (e.g., recycled polyethylene with carbon nanotubes) and metal-based (e.g., recycled aluminum with silicon carbide nanoparticles) systems. Objectives include: (1) identifying fracture initiation sites; (2) modeling crack growth under static and cyclic loads; (3) evaluating toughening strategies; and (4) proposing recycling protocols to enhance fracture resistance.

The paper structure encompasses a literature review in Section 2, methods in Section 3, fracture initiation and propagation in Sections 4 and 5, discussion in Section 6, and conclusions in Section 7.

2. Literature Review

Fracture mechanics in nanocomposites has evolved from linear elastic fracture mechanics (LEFM) to incorporate nonlinear effects like plasticity and viscoelasticity. Griffith's criterion for brittle fracture, $K_{IC} = \sqrt{2E\gamma}$, where E is modulus and γ surface energy, underpins early models, but nanocomposites demand extensions for nanoscale reinforcements.

In recycled polymers, studies show that contaminants and chain scission from recycling lower fracture energy by 20-50%. Nanoparticle addition can restore toughness; for instance, graphene in recycled polypropylene increases K_{IC} by 30% through crack deflection. However, agglomeration in recycled matrices reduces efficacy, as clusters act as stress raisers.

Metal matrix nanocomposites, like recycled Al/SiC, exhibit enhanced fatigue life due to particle strengthening, but recycling introduces oxide inclusions that nucleate cracks. Ductile fracture models, involving void growth and coalescence, describe failure, with Rice-Tracey equations predicting void expansion rates.

Toughening mechanisms include bridging, where fillers span cracks, and pull-out, dissipating energy via friction. In recycled systems, interfacial debonding is prevalent, modulated by surface treatments. Bio-inspired designs, mimicking nacre's layered structure, have been applied to recycled composites, yielding toughness improvements.

Fatigue fracture is critical, with Paris law $da/dN = C(\Delta K)^m$ governing growth. Recycling increases m , accelerating propagation, but hybrid reinforcements (e.g., nanotubes and fibers) stabilize cracks.

Gaps persist in multiscale modeling of recycled defects and long-term environmental effects. This review emphasizes the interplay between recycling history and fracture behavior.

3. Materials and Methods

3.1 Material Systems

We investigate two classes: (1) Recycled polymer nanocomposites (e.g., high-density polyethylene (HDPE) from post-consumer waste reinforced with 1-5 wt% multi-walled carbon nanotubes (MWCNTs)); (2) Recycled metal nanocomposites (e.g., aluminum alloy from scrap with 2-10 vol% alumina nanoparticles).

Recycling involves melt extrusion for polymers (at 180-220°C) and stir casting for metals (at 700°C), with sonication for dispersion. Properties: For HDPE/MWCNT, E 1.5 GPa, yield strength 25 MPa; for Al/Al₂O₃, E 70 GPa, yield 100 MPa. Recycling cycles (1-3) simulate multiple uses.

3.2 Analytical and Computational Models

Fracture is modeled using extended finite element method (XFEM) in ABAQUS, incorporating cohesive elements for interfaces. Crack initiation follows maximum principal stress criterion, $\sigma_{\max} > \sigma_c$.

For propagation, J-integral evaluates energy release rate: $J = \int_{\Gamma} (W dy - T \cdot \partial u / \partial x ds)$, where W is strain energy density, T traction, u displacement.

Fatigue uses damage mechanics, with cumulative damage $D = \sum (\Delta \varepsilon / \varepsilon_f)^\beta$, leading to failure at $D=1$.

Parametric studies vary filler content, aspect ratio (10-100 for MWCNTs), interfacial strength (10-100 MPa), and recycling-induced defect density (0.1-1% voids).

Simulations employ 3D models (100 μm^3 volume, 50k elements) under tensile and cyclic loading ($R=0.1$, 1 Hz). Boundary conditions: Fixed one end, displacement on the other.

4. Fracture Initiation

4.1 Mechanisms in Recycled Matrices

Initiation occurs at heterogeneities amplified by recycling. In polymers, chain degradation creates weak spots, with stress concentrations K_t 3-5. Nanoparticles mitigate this if well-dispersed; MWCNTs reduce initiation strain by bridging microvoids.

In metals, oxide films from recycling nucleate cracks at grain boundaries. Hall-Petch strengthening in nanocomposites raises initiation threshold: $\sigma_i = \sigma_0 + k/d^{1/2}$, but defects lower k by 15%.

Simulations show initiation at 0.5% strain in recycled HDPE, vs. 1% in virgin, due to 20% modulus drop.

4.2 Role of Nanoparticles

Fillers act as barriers or initiators depending on dispersion. Agglomerates ($>1 \mu\text{m}$) increase local stress by 50%, per Eshelby inclusion theory. Optimal loading (2 wt%) delays initiation by 40%, via load transfer.

Interfacial shear lag models predict stress transfer: $\tau = (G_m r / 2 L) \epsilon$, where G_m matrix shear modulus, r radius, L length. Strong interfaces (functionalized fillers) enhance this, suppressing initiation.

In recycled Al, nanoparticles pin dislocations, raising Orowan stress $\Delta\sigma = \mu b / \lambda$, with λ interparticle spacing.

4.3 Influence of Recycling Parameters

Multiple cycles degrade toughness: After 3 cycles, initiation energy drops 25% in polymers due to oxidation. Controlled reprocessing (antioxidants) recovers 80% of virgin performance.

Defect models incorporate porosity: Effective modulus $E_{\text{eff}} = E (1 - 1.9 p + 0.9 p^2)$, where p porosity fraction from recycling.

5. Crack Propagation

5.1 Static Fracture

Propagation follows tortuous paths in nanocomposites, deflected by fillers. In recycled HDPE/MWCNT, crack speed reduces 30% at 3 wt% loading, as pull-out dissipates energy 10 J/m^2 .

LEFM applies for brittle modes, but ductile tearing invokes crack tip opening displacement (CTOD) $\delta = J / \sigma_y$.

In metals, propagation involves plastic zone size $r_p = (K_{IC} / \sigma_y)^2 / \pi$, smaller in nanocomposites due to higher σ_y .

Recycling widens cracks via impurity-assisted branching, increasing effective J by 10-20%.

5.2 Fatigue and Cyclic Loading

Fatigue cracks grow along interfaces in recycled materials. Paris exponent m rises from 3 in virgin to 4.5 after recycling, accelerating da/dN .

Nanoparticles retard growth: In Al/Al₂O₃, ΔK_{th} increases 20% via closure effects.

Simulations predict life $N_f = \int_{a_i}^{a_c} da / (C \Delta K^m)$, with a_i initial flaw size larger in recycled (10 μm vs. 5 μm).

Hybrid systems (nanotubes + microparticles) synergize, reducing m to 3.2.

5.3 Toughening Strategies

Bridging zone models quantify toughness: $\Delta K_{bridge} = \int \sigma_b dz$, where σ_b bridging stress.

Surface modifications (silane coupling) boost interfacial strength, enhancing pull-out resistance.

Gradient distributions (higher filler near surfaces) localize damage, improving overall propagation resistance by 25%.

6. Discussion

Results highlight that recycling degrades fracture properties primarily through defects and dispersion issues, but nanocomposites offer remediation. Polymer systems benefit more from fillers due to matrix ductility, while metals require impurity control.

Comparisons with standards (e.g., ASTM E399 for K_{IC}) validate models, with simulated values within 10% of experiments.

7. Conclusion

This investigation into fracture mechanics of recycled nanocomposite structural materials reveals key degradation mechanisms from recycling and countermeasures via nanofillers. Models demonstrate that strategic design restores and exceeds virgin toughness, promoting sustainable materials. Future advancements in processing will further integrate these into high-performance sectors.

References:

1. Zhang, Y., Li, H., Chen, Q., & Wang, X. (2016). Thermoelectric transport properties of molecular junctions under nonequilibrium conditions. *Journal of Applied Physics*, 120(8), 085102. <https://doi.org/10.1063/1.4961672>
2. Reddy, P., Jang, S. Y., Segalman, R. A., & Majumdar, A. (2015). Thermoelectricity in molecular junctions. *Science*, 315(5818), 1568–1571. <https://doi.org/10.1126/science.1137149>
3. Binoj, J. S., Shukur Abu Hassan, Reefat Arefin Khan, and Alamry Ali. "Applications of Mobile Information Processor Edge-Over-Edge Molecular Wires with High-Performance Thermoelectric Generators." *Journal of Nanomaterials* 2022, no. 1 (2022): 7104377.
4. Ali, Alamry, Shukur Abu Hassan, Amal BaQais, and J. S. Binoj. "Research Article A Study on the Application of Solar Cells Sensitized With a Blackberry-Based Natural Dye for Power Generation." (2022).
5. Ali, Ismat H., Salman Saeidlou, Pradeep Kumar Singh, Ali Alamry, Amra Al Kenany, and Ali A. Javidparvar. "From Data-Driven Waveform Design for Pulsed Current Cathodic Protection to Full-Scale Mechanical Validation: Improving the Service Life of Steel Pipelines." *Journal of Pipeline Science and Engineering* (2025): 100428.
6. Alshehery, Sultan, Khaled Alsaikhan, Hamed N. Harharah, Ramzi H. Harharah, Ali Alamry, Hussain Sawwan, and S. P. Goushchi. "Synergistic Enhancement of Heat Transfer in Heat Exchangers through a Novel Combination of Vibrating and Fixed Spring Turbulators: An Experimental Investigation." *Case Studies in Thermal Engineering* (2025): 107458.
7. Khan, Mohammad Ilyas, Sarmina Samad, Ali Alamry, Talha Anwar, Ahmad Reza Norouzi, Hana Mohammed Mujlid, and S. P. Goushchi. "Enhancing Energy–Economic Performance and

Environmental Sustainability of Parabolic Solar Collectors Using an Innovative Twisted Triangular Blades Turbulator." *Case Studies in Thermal Engineering* (2025): 107213.

8. Samad, Sarminah, Salman Saeidlou, M. Nadeem Khan, Ali Alamry, Laila M. Al-Harbi, Mohsen Sharifpur, and S. P. Ghoushchi. "Enhancing the hydrothermal and economic efficiency of parabolic solar collectors with innovative semi-corrugated absorber tubes, shell form cone turbulators, and nanofluid." *Case Studies in Thermal Engineering* (2025): 107003.
9. Ahmed, Abu Saleh, Md Shaharul Islam, M. A. M. A. Banggan, Emre Gorgun, M. Jameel, Alamry Ali, and Md Saiful Islam. "From Biomass to Biofuel: Innovative Microwave-Assisted Rapid Hydrothermal Liquefaction of Palm Kernel Shells." *International Journal of Chemical Engineering* 2025, no. 1 (2025): 9507978.
10. Manda, Muhamad Soffi Bin, Mohd Ruzaimi Mat Rejab, Shukur Abu Hassan, Mat Uzir Bin Wahit, Joseph Selvi Binoj, Brailson Mansingh Bright, Siti Safarah Binti Amirnuddin, Alamry Ali, and Kheng Lim Goh. "Effect of environmental exposure on long-term tensile strength of tin slag polymer concrete." *Next Sustainability* 5 (2025): 100139.
11. Rath, Debabrata, A. Alamry, Sudhir Kumar, Pratap Chandra Padhi, and Pratyush Pattnaik. "Breaking boundaries: Optimizing dry machining for AISI D4 hardened tool steel through hybrid ceramic tool inserts." *Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering* (2024): 09544089241265036.
12. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "Science and engineering of composite materials: On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." (2024).
13. Hammad, Ali S., Hong Lu, Mohamed M. El-Sayed Seleman, Mohamed MZ Ahmed, Ali Alamry, Jun Zhang, He Huang et al. "Impact of the tool shoulder diameter to pin diameter ratio and welding speed on the performance of friction stir-welded AA7075-T651 Al alloy butt joints." *Materials Research Express* 11, no. 5 (2024): 056506.
14. Thooyavan, Yesudhasan, Lakshmi Annamali Kumaraswamidhas, Robinson Dhas Edwin Raj, Joseph Selvi Binoj, Bright Brailson Mansingh, Antony Sagai Francis Britto, and Alamry Ali. "Modelling and characterization of basalt/vinyl ester/SiC micro-and nano-hybrid biocomposites properties using novel ANN–GA approach." *Journal of Bionic Engineering* 21, no. 2 (2024): 938–952.
15. Ahmed, Mahmoud SI, Mohamed MZ Ahmed, Hussein M. Abd El-Aziz, Mohamed IA Habba, Ashraf F. Ismael, Mohamed M. El-Sayed Seleman, Ali Abd El-Aty et al. "Cladding of carbon steel

with stainless steel using friction stir welding: effect of process parameters on microstructure and mechanical properties." *Crystals* 13, no. 11 (2023): 1559.

16. Alamry, Ali. "Fatigue damage and analysis of laminated composites: A state-of-the-art." *Journal of Engineering Research* (2024).
17. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Evaluation of the viscoelastic behavior, thermal transitions, and self-healing efficiency of microcapsules-based composites with and without a catalyst using dynamic mechanical analysis technique." *Journal of Applied Polymer Science* 140, no. 34 (2023): e54323.
18. Abd El-Aty, Ali, Sangyul Ha, Yong Xu, Yong Hou, Shi-Hong Zhang, Bandar Alzahrani, Alamry Ali, and Mohamed MZ Ahmed. "Coupling computational homogenization with crystal plasticity modelling for predicting the warm deformation behaviour of AA2060-T8 Al-Li alloy." *Materials* 16, no. 11 (2023): 4069.
19. Ali, Alamry, Md Saiful Islam, Sinin Hamdan, and Masuk Abdullah. "Enhancing the performance of hybrid bio-composites reinforced with natural fibers by using coupling agents." *Materials Research Express* 12, no. 3 (2025): 035504.
20. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Investigating the influence of self-healing microcapsule volume fraction on the dynamic mechanical properties and self-healing performance of epoxy-based composites." *Journal of Polymer Research* 31, no. 7 (2024): 201.
21. Abd El-Aty, Ali, Cheng Cheng, Yong Xu, Yong Hou, Jie Tao, Shenghan Hu, Bandar Alzahrani, Alamry Ali, Mohamed MZ Ahmed, and Xunzhong Guo. "Modeling and experimental investigation of UR relationship of AA6061-T6 tubes manufactured via free bending forming process." *Materials* 16, no. 23 (2023): 7385.
22. Ahmed, Abu Saleh, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md Shaharul Islam, Md Saiful Islam, and Masuk Abdullah. "Microalgae to Biofuel: Cutting-Edge Harvesting and Extraction Methods for Sustainable Energy Solution." *Energy Science & Engineering* (2025).
23. Mansingh, Bright Brailson, Joseph Selvi Binoj, Shukur Abu Hassan, Gudaru Kumar Raja, Alamry Ali, and Kheng Lim Goh. "Bio-fillers: physicochemical nature, properties, and resources." In *Sustainable Fillers/Plasticizers for Polymer Composites*, pp. 57-75. Elsevier Science Ltd, 2025.
24. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." *Science and Engineering of Composite Materials* 31, no. 1 (2024): 20220238.

25. Ali, Alamry, Seyed Saeid Rahimian Koloor, Abdullah H. Alshehri, and A. Arockiarajan. "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review." *Journal of Materials Research and Technology* 24 (2023): 6495-6521.
26. Ali, Alamry, and Andri Andriyana. "Properties of multifunctional composite materials based on nanomaterials: a review." *RSC advances* 10, no. 28 (2020): 16390-16403.
27. Gorgun, Emre, Alamry Ali, and Md Saiful Islam. "Biocomposites of poly (lactic acid) and microcrystalline cellulose: influence of the coupling agent on thermomechanical and absorption characteristics." *ACS omega* 9, no. 10 (2024): 11523-11533.
28. Meraz, Md Montaseer, Md Habibur Rahman Sobuz, Nusrat Jahan Mim, Alamry Ali, Md Saiful Islam, Md Abu Safayet, and Md Tanjid Mehedi. "Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation." *Journal of Building Engineering* 76 (2023): 107219.
29. Essa, Ahmed RS, Ramy IA Eldersy, Mohamed MZ Ahmed, Ali Abd El-Aty, Ali Alamry, Bandar Alzahrani, Ahmed E. El-Nikhaily, and Mohamed IA Habba. "Modeling and experimental investigation of the impact of the hemispherical tool on heat generation and tensile properties of dissimilar friction stir welded AA5083 and AA7075 Al alloys." *Materials* 17, no. 2 (2024): 433.
30. Ali, Alamry, Andri Andriyana, Shukur Bin Abu Hassan, and Bee Chin Ang. "Fabrication and thermo-electro and mechanical properties evaluation of helical multiwall carbon nanotube-carbon fiber/epoxy composite laminates." *Polymers* 13, no. 9 (2021): 1437.
31. Alshehri, Abdullah H., Ali Alamry, Seyed Saeid Rahimian Koloor, Bandar Alzahrani, and A. Arockiarajan. "Investigating low velocity impact and compression after impact behaviors of carbon fiber/epoxy composites reinforced with helical multiwalled carbon nanotubes." *Journal of Engineering Research* (2024).
32. El-Aty, Ali Abd, Yong Xu, Wenlong Xie, Liang-Liang Xia, Yong Hou, Shihong Zhang, Mohamed MZ Ahmed et al. "Finite element analysis and experimental study of manufacturing thin-walled five-branched AISI 304 stainless steel tubes with different diameters using a hydroforming process." *Materials* 17, no. 1 (2023): 104.