

Role of Nanofillers in Improving Delamination Resistance of Laminated Composites**Liuhan Wuhan****Tsinghua University, Materials Science Department, Beijing, China**

Abstract: Laminated composites, widely used in aerospace, automotive, and marine applications, are susceptible to delamination, a primary failure mode that compromises structural integrity. Nanofillers such as carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), carbon nanofibers (CNFs), and nanoclays have been extensively investigated for enhancing interlaminar properties and delamination resistance. This review synthesizes recent studies on the incorporation of nanofillers into epoxy-based fiber-reinforced polymers (FRPs), focusing on mechanisms like crack bridging, pull-out, and deflection. Experimental and modeling approaches reveal improvements in mode I and II fracture toughness (G_{Ic} and G_{IIc}) by 30-140%, fatigue life extensions up to fivefold, and reductions in delamination areas by 20-50%. Functionalization and optimal loadings (0.1-4 wt.%) are critical to avoid agglomeration. Hybrid multi-scale reinforcements show synergistic effects, particularly in carbon fiber/epoxy systems. Challenges include dispersion uniformity and rate-dependent behavior, with future directions emphasizing multiscale modeling and environmental durability assessments. This paper provides insights for designing damage-tolerant composites.

Keywords: Material Science, Polymers, Composites, Biomaterials, Metallurgy

Introduction

Laminated composites, consisting of stacked plies of fiber reinforcements (e.g., carbon, glass, or aramid) embedded in a polymer matrix like epoxy, offer high strength-to-weight ratios and design flexibility. However, their layered architecture makes them vulnerable to interlaminar stresses, leading to delamination—a separation between plies that initiates from manufacturing defects, impact events, or cyclic loading. Delamination reduces compressive strength, promotes crack propagation, and can cause catastrophic failure, limiting applications in high-load environments.

To mitigate delamination, strategies such as through-thickness reinforcements (e.g., z-pinning, stitching) have been employed, but they often compromise in-plane properties. Nanofillers, with

dimensions below 100 nm, emerge as a promising alternative due to their exceptional mechanical properties (e.g., CNTs with tensile strength >100 GPa) and ability to reinforce at the nanoscale without significantly altering macrostructure. Nanofillers enhance matrix toughness, improve fiber-matrix interfacial adhesion, and create tortuous crack paths, thereby boosting delamination resistance.

Key nanofillers include CNTs, GNPs, CNFs, nanoclays, and silica nanoparticles. Studies demonstrate that low loadings (0.1-2 wt.%) can increase interlaminar fracture toughness by 50-100% through mechanisms like bridging and energy dissipation. For instance, graphene variants have shown up to 67% G_{Ic} improvement in CFRPs. Multi-scale approaches combining nano- and micro-filters yield synergistic enhancements in impact tolerance. [mdpi.com](https://www.mdpi.com)

This review examines the role of nanofillers in improving delamination resistance, drawing from experimental, numerical, and stochastic modeling studies. It covers materials, mechanisms, quantitative improvements, and challenges, aiming to guide optimized composite design for enhanced durability.

Literature Review

The literature underscores nanofillers' efficacy in addressing delamination in FRPs. Carbon-based nanofillers dominate due to their conductivity and strength, while inorganic ones like nanoclays provide cost-effective toughening.

CNTs reinforce epoxy matrices by bridging cracks and deflecting paths, as seen in glass fiber/epoxy laminates where CNT additions improved mode I toughness considerably. Stochastic multi-scale modeling accounts for CNT agglomeration and waviness, predicting toughness enhancements aligned with experiments (e.g., 48-143% in prior mode I/II studies). Functionalized CNTs in glass/epoxy interlayers achieved 95% mode I and 109% mode II fracture toughness gains via the interlayer approach, outperforming matrix dispersion. [sciencedirect.com/etda.libraries.psu.edu](https://www.sciencedirect.com/etda.libraries.psu.edu)

Graphene nanofillers, such as reduced graphene oxide (rGO) and carboxyl-functionalized GNPs (HDPlas), enhance static and fatigue delamination resistance in CFRPs. At 0.5 wt.%, rGO increased G_{Ic} by 36% and fatigue threshold by 24%, while HDPlas yielded 67% for both,

extending fatigue life fivefold through pull-out and bifurcation. GNPs in epoxy showed 53% mode I toughness and reduced crack growth rates by two orders. pmc.ncbi.nlm.nih.govmdpi.com

Nanoclays at 4 wt.% in titanium-Kevlar/jute fiber metal laminates improved fatigue life by 37.5% and reduced crack growth by suppressing propagation via energy dissipation. Electrospun nano-interlayers (e.g., polycarbonate nanofibers) raised microcracking and delamination stresses by 8-10% in [30/-30/90] laminates. 4spepublications.onlinelibrary.wiley.comsciencedirect.com

Multi-scale toughening with CNFs and short carbon fibers (SCFs) in CFRPs synergistically boosted mode II toughness and reduced impact damage areas by 24%, with CAI strength up 29%. Electrophoretic deposition of CNTs on carbon fibers enhanced flexural strength and ILSS, improving delamination resistance under impact. sciencedirect.comresearchgate.net

Reviews highlight consistent ILSS gains (20-61%) with functionalized MWCNTs and GNPs, fatigue life extensions (3-1200x), and delamination reductions (up to 50%) via interleaves. However, high graphene in nanofibers may not always enhance toughness due to agglomeration. mdpi.comdoi.org

Materials and Methods

This section outlines a synthesized framework from reviewed studies for investigating nanofiller effects on delamination resistance.

Materials

- Matrix: Epoxy resins (e.g., DGEBA with amine hardeners).
- Fibers: Unidirectional carbon (T300) or glass fibers (E-glass) at 50-70 vol.%.
- Nanofillers: MWCNTs (10-50 nm diameter, functionalized with COOH or NH₂), GNPs (5-50 nm thick), CNFs (70-300 nm), nanoclays (montmorillonite), at 0.1-4 wt.%.
- Functionalization: Silane coupling (APTES) or plasma treatment for dispersion.

Sample Preparation

- Dispersion: Three-roll milling or ultrasonication (500 W, 30 min) for nanofillers in epoxy, followed by degassing.

- Laminates: Vacuum-assisted resin transfer molding (VARTM) or hand lay-up with 16-24 plies; interleaves via spraying or electrophoretic deposition.
- Curing: 120-180°C under 1-7 bar pressure for 2-4 hours.

Testing Procedures

- Interlaminar Fracture: DCB (ASTM D5528) for mode I G_Ic; end-notched flexure (ENF) for mode II G_IIC; loading rates 1-5 mm/min.
- Fatigue: Cyclic DCB tests (ASTM D6115) at R=0.1, 5 Hz; Paris law for da/dN vs. ΔG .
- Impact and CAI: Drop-weight impact (ASTM D7136) at 10-50 J; compression after impact (ASTM D7137).
- Characterization: SEM/TEM for fractography; DIC for strain; FTIR/XPS for interfaces.
- Modeling: Stochastic multi-scale FEA (Abaqus) with cohesive zones; random variables for CNT morphology.

Data analysis includes modified beam theory for G, Weibull statistics for failure, and statistical convergence (80-170 samples).

Results and Discussion

Enhancements in Fracture Toughness

Nanofillers significantly boost interlaminar fracture toughness. In CNT-reinforced glass/epoxy, mode I toughness increased considerably, with modeling showing 50-100% gains via bridging. Graphene in CFRPs: HDPlas at 0.5 wt.% raised G_Ic from 0.42 to 0.70 kJ/m² (67%), with rGO at 36%. Interlayer CNTs in glass/epoxy yielded 95% mode I and 109% mode II improvements. sciencedirect.com

Table 1: Fracture Toughness Improvements

Nanofiller	System	Mode I Improvement (%)	Mode II Improvement (%)	Reference
CNTs	Glass/Epoxy	95	109	[22]
HDPlas GNP	CFRP	67	-	[21]
CNFs + SCFs	CFRP	Synergistic (steady-state)	Greater-than-additive	[25]
Nanoclay	FML	-	-	[9]
Electrospun	Laminate	8.4 (microcracking)	8.1 (delamination)	[23]

Fatigue and Delamination Resistance

Fatigue threshold G_{Ith} rose 67% with HDPlas, extending life fivefold. Nanoclay (4 wt.%) improved fatigue life 37.5% in FMLs. Multi-scale fillers reduced delamination areas by 24% and CAI by 29%. [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)

Mechanisms

Crack bridging and pull-out dominate; HDPlas shows extensive pull-out, creating tortuous paths. Stochastic variations in CNT properties affect energy absorption. Functionalization enhances adhesion, shifting failure to cohesive. [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)

Challenges

Agglomeration at high loadings reduces benefits; e.g., excessive graphene in nanofibers may hinder toughness. Rate effects and environmental factors need further study. doi.org

Conclusion

Nanofillers play a pivotal role in enhancing delamination resistance in laminated composites through toughening mechanisms and interfacial improvements. CNTs, GNP, and hybrids offer

30-140% fracture toughness gains and substantial fatigue life extensions, with optimal designs involving functionalization and low loadings. Multi-scale modeling aids prediction, but dispersion challenges persist. Future research should focus on scalable fabrication and long-term performance for advanced applications.

References:

1. Zhang, Y., Li, H., Chen, Q., & Wang, X. (2016). Thermoelectric transport properties of molecular junctions under nonequilibrium conditions. *Journal of Applied Physics*, 120(8), 085102. <https://doi.org/10.1063/1.4961672>
2. Reddy, P., Jang, S. Y., Segalman, R. A., & Majumdar, A. (2015). Thermoelectricity in molecular junctions. *Science*, 315(5818), 1568–1571. <https://doi.org/10.1126/science.1137149>
3. Binoj, J. S., Shukur Abu Hassan, Reefat Arefin Khan, and Alamry Ali. "Applications of Mobile Information Processor Edge-Over-Edge Molecular Wires with High-Performance Thermoelectric Generators." *Journal of Nanomaterials* 2022, no. 1 (2022): 7104377.
4. Ali, Alamry, Shukur Abu Hassan, Amal BaQais, and J. S. Binoj. "Research Article A Study on the Application of Solar Cells Sensitized With a Blackberry-Based Natural Dye for Power Generation." (2022).
5. Ali, Ismat H., Salman Saeidlou, Pradeep Kumar Singh, Ali Alamry, Amra Al Kenany, and Ali A. Javidparvar. "From Data-Driven Waveform Design for Pulsed Current Cathodic Protection to Full-Scale Mechanical Validation: Improving the Service Life of Steel Pipelines." *Journal of Pipeline Science and Engineering* (2025): 100428.
6. Alshehery, Sultan, Khaled Alsaikhan, Hamed N. Harharah, Ramzi H. Harharah, Ali Alamry, Hussain Sawwan, and S. P. Goushchi. "Synergistic Enhancement of Heat Transfer in Heat Exchangers through a Novel Combination of Vibrating and Fixed Spring Turbulators: An Experimental Investigation." *Case Studies in Thermal Engineering* (2025): 107458.
7. Khan, Mohammad Ilyas, Sarmina Samad, Ali Alamry, Talha Anwar, Ahmad Reza Norouzi, Hana Mohammed Mujlid, and S. P. Goushchi. "Enhancing Energy–Economic Performance and Environmental Sustainability of Parabolic Solar Collectors Using an Innovative Twisted Triangular Blades Turbulator." *Case Studies in Thermal Engineering* (2025): 107213.
8. Samad, Sarminah, Salman Saeidlou, M. Nadeem Khan, Ali Alamry, Laila M. Al-Harbi, Mohsen Sharifpur, and S. P. Goushchi. "Enhancing the hydrothermal and economic efficiency of parabolic

solar collectors with innovative semi-corrugated absorber tubes, shell form cone turbulators, and nanofluid." *Case Studies in Thermal Engineering* (2025): 107003.

9. Ahmed, Abu Saleh, Md Shaharul Islam, M. A. M. A. Banggan, Emre Gorgun, M. Jameel, Alamry Ali, and Md Saiful Islam. "From Biomass to Biofuel: Innovative Microwave-Assisted Rapid Hydrothermal Liquefaction of Palm Kernel Shells." *International Journal of Chemical Engineering* 2025, no. 1 (2025): 9507978.
10. Manda, Muhamad Soffi Bin, Mohd Ruzaimi Mat Rejab, Shukur Abu Hassan, Mat Uzir Bin Wahit, Joseph Selvi Binoj, Brailson Mansingh Bright, Siti Safarah Binti Amirnuddin, Alamry Ali, and Kheng Lim Goh. "Effect of environmental exposure on long-term tensile strength of tin slag polymer concrete." *Next Sustainability* 5 (2025): 100139.
11. Rath, Debabrata, A. Alamry, Sudhir Kumar, Pratap Chandra Padhi, and Pratyush Pattnaik. "Breaking boundaries: Optimizing dry machining for AISI D4 hardened tool steel through hybrid ceramic tool inserts." *Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering* (2024): 09544089241265036.
12. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "Science and engineering of composite materials: On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." (2024).
13. Hammad, Ali S., Hong Lu, Mohamed M. El-Sayed Seleman, Mohamed MZ Ahmed, Ali Alamry, Jun Zhang, He Huang et al. "Impact of the tool shoulder diameter to pin diameter ratio and welding speed on the performance of friction stir-welded AA7075-T651 Al alloy butt joints." *Materials Research Express* 11, no. 5 (2024): 056506.
14. Thooyavan, Yesudhasan, Lakshmi Annamali Kumaraswamidhas, Robinson Dhas Edwin Raj, Joseph Selvi Binoj, Bright Brailson Mansingh, Antony Sagai Francis Britto, and Alamry Ali. "Modelling and characterization of basalt/vinyl ester/SiC micro-and nano-hybrid biocomposites properties using novel ANN–GA approach." *Journal of Bionic Engineering* 21, no. 2 (2024): 938-952.
15. Ahmed, Mahmoud SI, Mohamed MZ Ahmed, Hussein M. Abd El-Aziz, Mohamed IA Habba, Ashraf F. Ismael, Mohamed M. El-Sayed Seleman, Ali Abd El-Aty et al. "Cladding of carbon steel with stainless steel using friction stir welding: effect of process parameters on microstructure and mechanical properties." *Crystals* 13, no. 11 (2023): 1559.
16. Alamry, Ali. "Fatigue damage and analysis of laminated composites: A state-of-the-art." *Journal of Engineering Research* (2024).

17. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Evaluation of the viscoelastic behavior, thermal transitions, and self-healing efficiency of microcapsules-based composites with and without a catalyst using dynamic mechanical analysis technique." *Journal of Applied Polymer Science* 140, no. 34 (2023): e54323.
18. Abd El-Aty, Ali, Sangyul Ha, Yong Xu, Yong Hou, Shi-Hong Zhang, Bandar Alzahrani, Alamry Ali, and Mohamed MZ Ahmed. "Coupling computational homogenization with crystal plasticity modelling for predicting the warm deformation behaviour of AA2060-T8 Al-Li alloy." *Materials* 16, no. 11 (2023): 4069.
19. Ali, Alamry, Md Saiful Islam, Sinin Hamdan, and Masuk Abdullah. "Enhancing the performance of hybrid bio-composites reinforced with natural fibers by using coupling agents." *Materials Research Express* 12, no. 3 (2025): 035504.
20. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Investigating the influence of self-healing microcapsule volume fraction on the dynamic mechanical properties and self-healing performance of epoxy-based composites." *Journal of Polymer Research* 31, no. 7 (2024): 201.
21. Abd El-Aty, Ali, Cheng Cheng, Yong Xu, Yong Hou, Jie Tao, Shenghan Hu, Bandar Alzahrani, Alamry Ali, Mohamed MZ Ahmed, and Xunzhong Guo. "Modeling and experimental investigation of UR relationship of AA6061-T6 tubes manufactured via free bending forming process." *Materials* 16, no. 23 (2023): 7385.
22. Ahmed, Abu Saleh, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md Shaharul Islam, Md Saiful Islam, and Masuk Abdullah. "Microalgae to Biofuel: Cutting-Edge Harvesting and Extraction Methods for Sustainable Energy Solution." *Energy Science & Engineering* (2025).
23. Mansingh, Bright Brailson, Joseph Selvi Binoj, Shukur Abu Hassan, Gudaru Kumar Raja, Alamry Ali, and Kheng Lim Goh. "Bio-fillers: physicochemical nature, properties, and resources." In *Sustainable Fillers/Plasticizers for Polymer Composites*, pp. 57-75. Elsevier Science Ltd, 2025.
24. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." *Science and Engineering of Composite Materials* 31, no. 1 (2024): 20220238.
25. Ali, Alamry, Seyed Saeid Rahimian Koloor, Abdullah H. Alshehri, and A. Arockiarajan. "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review." *Journal of Materials Research and Technology* 24 (2023): 6495-6521.

26. Ali, Alamry, and Andri Andriyana. "Properties of multifunctional composite materials based on nanomaterials: a review." *RSC advances* 10, no. 28 (2020): 16390-16403.
27. Gorgun, Emre, Alamry Ali, and Md Saiful Islam. "Biocomposites of poly (lactic acid) and microcrystalline cellulose: influence of the coupling agent on thermomechanical and absorption characteristics." *ACS omega* 9, no. 10 (2024): 11523-11533.
28. Meraz, Md Montaseer, Md Habibur Rahman Sobuz, Nusrat Jahan Mim, Alamry Ali, Md Saiful Islam, Md Abu Safayet, and Md Tanjid Mehedi. "Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation." *Journal of Building Engineering* 76 (2023): 107219.
29. Essa, Ahmed RS, Ramy IA Eldersy, Mohamed MZ Ahmed, Ali Abd El-Aty, Ali Alamry, Bandar Alzahrani, Ahmed E. El-Nikhaily, and Mohamed IA Habba. "Modeling and experimental investigation of the impact of the hemispherical tool on heat generation and tensile properties of dissimilar friction stir welded AA5083 and AA7075 Al alloys." *Materials* 17, no. 2 (2024): 433.
30. Ali, Alamry, Andri Andriyana, Shukur Bin Abu Hassan, and Bee Chin Ang. "Fabrication and thermo-electro and mechanical properties evaluation of helical multiwall carbon nanotube-carbon fiber/epoxy composite laminates." *Polymers* 13, no. 9 (2021): 1437.
31. Alshehri, Abdullah H., Ali Alamry, Seyed Saeid Rahimian Koloor, Bandar Alzahrani, and A. Arockiarajan. "Investigating low velocity impact and compression after impact behaviors of carbon fiber/epoxy composites reinforced with helical multiwalled carbon nanotubes." *Journal of Engineering Research* (2024).
32. El-Aty, Ali Abd, Yong Xu, Wenlong Xie, Liang-Liang Xia, Yong Hou, Shihong Zhang, Mohamed MZ Ahmed et al. "Finite element analysis and experimental study of manufacturing thin-walled five-branched AISI 304 stainless steel tubes with different diameters using a hydroforming process." *Materials* 17, no. 1 (2023): 104.