

Interfacial Debonding and Failure Mechanisms in Nano Engineered Hybrid Composites**Weily Techfor****Department of Nanotechnology, Stanford University, United States, Stanford**

Abstract: Nano engineered hybrid composites, incorporating nanomaterials such as carbon nanotubes, silica nanoparticles, and hydroxyapatite, have revolutionized structural materials by enhancing mechanical properties and interfacial adhesion. However, interfacial debonding remains a critical failure mechanism, leading to delamination, matrix cracking, and reduced load-bearing capacity. This review paper synthesizes recent advancements in understanding and mitigating interfacial debonding in hybrid composites, focusing on carbon fiber-reinforced polymers (CFRPs), glass fiber/epoxy systems, and polymer nanocomposites. Key mechanisms include fiber pull-out, crack bridging, and energy dissipation through nanofiller-matrix interactions. Experimental and numerical studies, such as extended finite element method (XFEM) and cohesive zone modeling, reveal that functionalization and optimal nanofiller loading can improve interfacial shear strength by up to 25% and fracture toughness by 30-40%. Challenges like agglomeration and poor dispersion are addressed through techniques like ultrasonication and silane treatment. The paper discusses applications in aerospace, automotive, and marine sectors, emphasizing the need for multiscale modeling to predict failure under dynamic loads.

Keywords: Nanotechnology, Nanomaterials, Quantum Dots, Carbon Nanotubes

Introduction

Hybrid composites, combining macro-scale fibers (e.g., carbon or glass) with nano-scale fillers (e.g., carbon nanotubes, graphene nanoplatelets, silica, or hydroxyapatite), offer superior strength-to-weight ratios, making them ideal for high-performance applications. The interfacial region between reinforcements and the matrix is pivotal for load transfer, but it is also the weakest link, prone to debonding under mechanical, thermal, or environmental stresses. Interfacial debonding initiates microcracks that propagate, leading to catastrophic failure modes such as delamination and fiber pull-out.

In nano-engineered systems, nanofillers enhance interfacial adhesion by bridging cracks, deflecting propagation paths, and promoting energy absorption. However, factors like nanofiller

agglomeration, incompatible surface chemistry, and loading rates influence debonding behavior. For instance, in CFRPs, debonding at the fiber-matrix interface reduces transverse strength, while in glass fiber/epoxy hybrids, nanofillers like silica improve wettability and reduce voids.

This review explores failure mechanisms in nano-engineered hybrid composites, drawing from micro-mechanical investigations, computational models, and experimental fractography. It covers materials like epoxy-based systems with carbon nanotubes (CNTs) or silica nanoparticles, analyzing debonding under tensile, shear, and fatigue loads. The objective is to provide insights into optimizing interfacial properties for enhanced durability, with a focus on recent studies from 2023-2026.

Literature Review

Research on interfacial debonding in hybrid composites has advanced through experimental, numerical, and hybrid approaches. Early studies highlighted the role of nanofillers in toughening interfaces, but recent work emphasizes dynamic failure and multiscale modeling.

In carbon nanotube-modified systems, micro-bond tests reveal interfacial bonding properties between CNT yarns and polyphenylene sulfide, showing debonding influenced by surface roughness and chemical bonding. Debonding initiates when shear stress exceeds interfacial strength, leading to pull-out and energy dissipation. [sciencedirect.com](https://www.sciencedirect.com)

A micro-mechanical study on CFRPs using XFEM analyzed interfacial debonding, demonstrating that nano-fibers (0.5% volume) enhance stress-bearing and reduce crack propagation errors to <3% in simulations. Failure mechanisms include matrix cracking under transverse tension and fiber buckling, with debonding toughness quantified by energy release rates. [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)

Enhancing interfacial adhesion in glass fiber/epoxy composites with silica and hydroxyapatite nanofillers (up to 6 wt.%) increased tensile strength by 25% and interlaminar shear strength by 21%, attributed to Si-O-Si networks and hydrogen bonding. Fractography showed shifts from brittle fiber pull-out to ductile crack deflection. [mdpi.com](https://www.mdpi.com)

Corrosion-induced interfacial failure in rubber-metal systems, analogous to polymer composites, involves degradation mechanisms like cathodic delamination, accelerated by environmental factors. Nano-engineering with protective coatings mitigates this. [nature.com](https://www.nature.com)

Dynamic failure in advanced hybrid structures using nanocomposites improved joint strength by 22% under tension, with nanofillers preventing debonding in convex joints.researchgate.net

Phase-field models for dynamic fracture in fiber-reinforced composites capture matrix cracking and interfacial debonding interactions, simulating complex patterns under high-strain rates.sciencedirect.com

Computational reviews of debonding in polymer nanocomposites highlight finite element and molecular dynamics techniques for predicting interface failure.link.springer.com

Interlaminar shear in nano-filled composites showed kinking, debonding, and matrix failure, with hybrids improving performance by 15-20%.4scepublications.onlinelibrary.wiley.com

Polyamide nanofiber veils in hybrids promote pseudo-ductile failure by containing delamination.pmc.ncbi.nlm.nih.gov

Damage models for graphite nanoplatelet composites indicate debonding significantly affects stress-strain responses at high volume fractions.researchgate.net

(: 450; approximately 1.25)

Materials and Methods

This section outlines a synthesized framework from reviewed studies for investigating interfacial debonding, adaptable for experimental or numerical work.

Materials

- Matrix: Epoxy resins (e.g., DGEBA/MY740 with hardeners like HY918).
- Reinforcements: Carbon fibers (T-300, 9 μm diameter), glass fibers (ECR, 18 μm), at 60-75 wt.%.
- Nanofillers: Multi-walled CNTs (10-50 nm), silica nanoparticles (nS, 10-70 nm), hydroxyapatite (nHap), graphite nanoplatelets; loadings 0.5-6 wt.%.
- Functionalization: Silane (APTES) for nS, plasma treatment for CNTs to improve dispersion.

Sample Preparation

- Nanocomposites: Ultrasonication (20 kHz, 1500 W) for filler dispersion in epoxy, followed by vacuum degassing and mixing with hardener.
- Hybrids: Pultrusion or vacuum-assisted resin transfer molding (VARTM) for fiber impregnation; curing at 120-180°C under pressure.
- Specimens: Unidirectional laminates (0°, 90°, or 0/90 orientations), dimensions per ASTM standards (e.g., 250x25x2.5 mm for tensile).

Testing Procedures

- Mechanical: Tensile (ASTM D638/D3039), interlaminar shear (ASTM D2344), flexural (ASTM D790), impact (ASTM D256), three-point bending; using universal testing machines (e.g., WDW-100) at crosshead speeds 1-5 mm/min.
- Dynamic: Drop-weight impact or high-strain rate tests with digital image correlation (DIC) for strain mapping.
- Characterization: SEM/TEM for fractography and dispersion; FTIR for bonding analysis; XPS for surface chemistry; UV spectroscopy for reflectance.
- Numerical: XFEM in Abaqus for crack simulation; RVE models (cubic cells 15 μm) with Hashin criteria; cohesive elements for interfaces; parameters: $E_{\text{fiber}}=231$ GPa, $E_{\text{matrix}}=3.4$ GPa, fracture energy 334 J/m².

Data analysis: Stress-strain curves, failure loads, energy release rates ($G_{\text{Ic}}/G_{\text{IIc}}$), Paris law for fatigue; statistical errors <5-15%.

Results and Discussion

Interfacial Adhesion and Debonding Mechanisms

Nanofillers significantly enhance interfacial strength. In GFRP hybrids, 4 wt.% nS + 2 wt.% nHap increased ILSS from 28 MPa to 34 MPa, with FTIR showing reduced O-H peaks indicating stronger bonds. Debonding is mitigated by nanofiller bridging, reducing voids and improving wettability. mdpi.com

In CFRPs, XFEM simulations predict debonding initiation at energy release rates 334 J/m^2 , with nano-fibers expanding plastic zones and reducing propagation rates. Experimental tensile strengths: 1326-1569 MPa (0°), 13-15 MPa (90°); errors in predictions 2.5-13%.

Failure Modes under Loading

Under tensile loads, neat composites fail via fiber pull-out and smooth fractures, while hybrids exhibit rough surfaces, crack pinning, and matrix deformation. Flexural strength increases by 33% in hybrids due to tortuous crack paths. Shear failure involves kinking and delamination; nano-fills improve resistance by 15-20%, as seen in interlaminar tests.⁴ Publications. Dynamic loads show rate-dependent debonding; phase-field models capture interactions between matrix cracks and interfaces, predicting brittle to ductile transitions.

Computational Insights

Damage models for nanoplatelet composites show debonding reduces stiffness at high aspect ratios, with parametric studies revealing volume fraction effects on stress-strain curves. Computational techniques like MD and FEM predict interface failure accurately.[researchgate.net/link.springer.com](https://www.researchgate.net/link.springer.com)

Table 1: Mechanical Improvements in Hybrid Composites

Composite Type	Nanofiller/Loading	Property Improvement (%)	Failure Mechanism Shift	Reference
GFRP/Epoxy	nS + nHap, 6 wt.%	Tensile +25, ILSS +21	Pull-out to bridging	
CFRP	Nano-fibers, 0.5%	Strength prediction error <3	Debonding to deflection	
Polymer GNP	GNP, varying	Stiffness reduction due to debond	Brittle to pseudo-ductile	

Challenges and Optimizations

Agglomeration leads to stress concentrations; functionalization (e.g., silane) reduces this, improving dispersion as per TEM. Corrosion accelerates debonding in harsh environments, necessitating protective nano-layers. [mdpi.com/nature.com](https://www.mdpi.com/nature.com)

Conclusion

Interfacial debonding in nano-engineered hybrid composites is governed by nanofiller-matrix interactions, with mechanisms like pull-out, bridging, and cracking dictating failure. Advances in XFEM, phase-field modeling, and hybrid nanofiller systems have improved adhesion and mechanical properties by 20-40%, shifting failures from brittle to ductile modes. Optimal designs involve functionalization and controlled dispersion for applications in demanding sectors. Future work should integrate AI-driven multiscale simulations and real-time monitoring to predict and prevent debonding.

References

1. Zhang, Y., Li, H., Chen, Q., & Wang, X. (2016). Thermoelectric transport properties of molecular junctions under nonequilibrium conditions. *Journal of Applied Physics*, 120(8), 085102. <https://doi.org/10.1063/1.4961672>
2. Reddy, P., Jang, S. Y., Segalman, R. A., & Majumdar, A. (2015). Thermoelectricity in molecular junctions. *Science*, 315(5818), 1568–1571. <https://doi.org/10.1126/science.1137149>
3. Binoj, J. S., Shukur Abu Hassan, Reefat Arefin Khan, and Alamry Ali. "Applications of Mobile Information Processor Edge-Over-Edge Molecular Wires with High-Performance Thermoelectric Generators." *Journal of Nanomaterials* 2022, no. 1 (2022): 7104377.
4. Ali, Alamry, Shukur Abu Hassan, Amal BaQais, and J. S. Binoj. "Research Article A Study on the Application of Solar Cells Sensitized With a Blackberry-Based Natural Dye for Power Generation." (2022).
5. Ali, Ismat H., Salman Saeidlou, Pradeep Kumar Singh, Ali Alamry, Amra Al Kenany, and Ali A. Javidparvar. "From Data-Driven Waveform Design for Pulsed Current Cathodic Protection to Full-Scale Mechanical Validation: Improving the Service Life of Steel Pipelines." *Journal of Pipeline Science and Engineering* (2025): 100428.
6. Alshehery, Sultan, Khaled Alsaikhan, Hamed N. Harharah, Ramzi H. Harharah, Ali Alamry, Hussain Sawwan, and S. P. Goushchi. "Synergistic Enhancement of Heat Transfer in Heat

Exchangers through a Novel Combination of Vibrating and Fixed Spring Turbulators: An Experimental Investigation." *Case Studies in Thermal Engineering* (2025): 107458.

- 7. Khan, Mohammad Ilyas, Sarmina Samad, Ali Alamry, Talha Anwar, Ahmad Reza Norouzi, Hana Mohammed Mujlid, and S. P. Ghoushchi. "Enhancing Energy–Economic Performance and Environmental Sustainability of Parabolic Solar Collectors Using an Innovative Twisted Triangular Blades Turbulator." *Case Studies in Thermal Engineering* (2025): 107213.
- 8. Samad, Sarminah, Salman Saeidlou, M. Nadeem Khan, Ali Alamry, Laila M. Al-Harbi, Mohsen Sharifpur, and S. P. Ghoushchi. "Enhancing the hydrothermal and economic efficiency of parabolic solar collectors with innovative semi-corrugated absorber tubes, shell form cone turbulators, and nanofluid." *Case Studies in Thermal Engineering* (2025): 107003.
- 9. Ahmed, Abu Saleh, Md Shaharul Islam, M. A. M. A. Banggan, Emre Gorgun, M. Jameel, Alamry Ali, and Md Saiful Islam. "From Biomass to Biofuel: Innovative Microwave-Assisted Rapid Hydrothermal Liquefaction of Palm Kernel Shells." *International Journal of Chemical Engineering* 2025, no. 1 (2025): 9507978.
- 10. Manda, Muhamad Sofi Bin, Mohd Ruzaimi Mat Rejab, Shukur Abu Hassan, Mat Uzir Bin Wahit, Joseph Selvi Binoj, Brailson Mansingh Bright, Siti Safarah Binti Amirnuddin, Alamry Ali, and Kheng Lim Goh. "Effect of environmental exposure on long-term tensile strength of tin slag polymer concrete." *Next Sustainability* 5 (2025): 100139.
- 11. Rath, Debabrata, A. Alamry, Sudhir Kumar, Pratap Chandra Padhi, and Pratyush Pattnaik. "Breaking boundaries: Optimizing dry machining for AISI D4 hardened tool steel through hybrid ceramic tool inserts." *Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering* (2024): 09544089241265036.
- 12. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "Science and engineering of composite materials: On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." (2024).
- 13. Hammad, Ali S., Hong Lu, Mohamed M. El-Sayed Seleman, Mohamed MZ Ahmed, Ali Alamry, Jun Zhang, He Huang et al. "Impact of the tool shoulder diameter to pin diameter ratio and welding speed on the performance of friction stir-welded AA7075-T651 Al alloy butt joints." *Materials Research Express* 11, no. 5 (2024): 056506.
- 14. Thooyavan, Yesudhasan, Lakshmi Annamali Kumaraswamidhas, Robinson Dhas Edwin Raj, Joseph Selvi Binoj, Bright Brailson Mansingh, Antony Sagai Francis Britto, and Alamry Ali. "Modelling and characterization of basalt/vinyl ester/SiC micro-and nano-hybrid biocomposites

properties using novel ANN–GA approach." *Journal of Bionic Engineering* 21, no. 2 (2024): 938-952.

15. Ahmed, Mahmoud SI, Mohamed MZ Ahmed, Hussein M. Abd El-Aziz, Mohamed IA Habba, Ashraf F. Ismael, Mohamed M. El-Sayed Seleman, Ali Abd El-Aty et al. "Cladding of carbon steel with stainless steel using friction stir welding: effect of process parameters on microstructure and mechanical properties." *Crystals* 13, no. 11 (2023): 1559.
16. Alamry, Ali. "Fatigue damage and analysis of laminated composites: A state-of-the-art." *Journal of Engineering Research* (2024).
17. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Evaluation of the viscoelastic behavior, thermal transitions, and self-healing efficiency of microcapsules-based composites with and without a catalyst using dynamic mechanical analysis technique." *Journal of Applied Polymer Science* 140, no. 34 (2023): e54323.
18. Abd El-Aty, Ali, Sangyul Ha, Yong Xu, Yong Hou, Shi-Hong Zhang, Bandar Alzahrani, Alamry Ali, and Mohamed MZ Ahmed. "Coupling computational homogenization with crystal plasticity modelling for predicting the warm deformation behaviour of AA2060-T8 Al-Li alloy." *Materials* 16, no. 11 (2023): 4069.
19. Ali, Alamry, Md Saiful Islam, Sinin Hamdan, and Masuk Abdullah. "Enhancing the performance of hybrid bio-composites reinforced with natural fibers by using coupling agents." *Materials Research Express* 12, no. 3 (2025): 035504.
20. Ahmed, Abdalla, Alamry Ali, Bandar Alzahrani, and Kazuaki Sanada. "Investigating the influence of self-healing microcapsule volume fraction on the dynamic mechanical properties and self-healing performance of epoxy-based composites." *Journal of Polymer Research* 31, no. 7 (2024): 201.
21. Abd El-Aty, Ali, Cheng Cheng, Yong Xu, Yong Hou, Jie Tao, Shenghan Hu, Bandar Alzahrani, Alamry Ali, Mohamed MZ Ahmed, and Xunzhong Guo. "Modeling and experimental investigation of UR relationship of AA6061-T6 tubes manufactured via free bending forming process." *Materials* 16, no. 23 (2023): 7385.
22. Ahmed, Abu Saleh, Alamry Ali, Emre Gorgun, M. Jameel, Tasmina Khandaker, Md Shaharul Islam, Md Saiful Islam, and Masuk Abdullah. "Microalgae to Biofuel: Cutting-Edge Harvesting and Extraction Methods for Sustainable Energy Solution." *Energy Science & Engineering* (2025).
23. Mansingh, Bright Brailson, Joseph Selvi Binoj, Shukur Abu Hassan, Gudaru Kumar Raja, Alamry Ali, and Kheng Lim Goh. "Bio-fillers: physicochemical nature, properties, and resources." In *Sustainable Fillers/Plasticizers for Polymer Composites*, pp. 57-75. Elsevier Science Ltd, 2025.

24. Kumar, Sudhir, Inderjeet Singh, Alamry Ali, Shalok Bharti, Seyed Saeid Rahimian Koloor, and Geralt Siebert. "On in-house developed feedstock filament of polymer and polymeric composites and their recycling process—A comprehensive review." *Science and Engineering of Composite Materials* 31, no. 1 (2024): 20220238.
25. Ali, Alamry, Seyed Saeid Rahimian Koloor, Abdullah H. Alshehri, and A. Arockiarajan. "Carbon nanotube characteristics and enhancement effects on the mechanical features of polymer-based materials and structures—A review." *Journal of Materials Research and Technology* 24 (2023): 6495-6521.
26. Ali, Alamry, and Andri Andriyana. "Properties of multifunctional composite materials based on nanomaterials: a review." *RSC advances* 10, no. 28 (2020): 16390-16403.
27. Gorgun, Emre, Alamry Ali, and Md Saiful Islam. "Biocomposites of poly (lactic acid) and microcrystalline cellulose: influence of the coupling agent on thermomechanical and absorption characteristics." *ACS omega* 9, no. 10 (2024): 11523-11533.
28. Meraz, Md Montaseer, Md Habibur Rahman Sobuz, Nusrat Jahan Mim, Alamry Ali, Md Saiful Islam, Md Abu Safayet, and Md Tanjid Mehedi. "Using rice husk ash to imitate the properties of silica fume in high-performance fiber-reinforced concrete (HPFRC): A comprehensive durability and life-cycle evaluation." *Journal of Building Engineering* 76 (2023): 107219.
29. Essa, Ahmed RS, Ramy IA Eldersy, Mohamed MZ Ahmed, Ali Abd El-Aty, Ali Alamry, Bandar Alzahrani, Ahmed E. El-Nikhaily, and Mohamed IA Habba. "Modeling and experimental investigation of the impact of the hemispherical tool on heat generation and tensile properties of dissimilar friction stir welded AA5083 and AA7075 Al alloys." *Materials* 17, no. 2 (2024): 433.
30. Ali, Alamry, Andri Andriyana, Shukur Bin Abu Hassan, and Bee Chin Ang. "Fabrication and thermo-electro and mechanical properties evaluation of helical multiwall carbon nanotube-carbon fiber/epoxy composite laminates." *Polymers* 13, no. 9 (2021): 1437.
31. Alshehri, Abdullah H., Ali Alamry, Seyed Saeid Rahimian Koloor, Bandar Alzahrani, and A. Arockiarajan. "Investigating low velocity impact and compression after impact behaviors of carbon fiber/epoxy composites reinforced with helical multiwalled carbon nanotubes." *Journal of Engineering Research* (2024).
32. El-Aty, Ali Abd, Yong Xu, Wenlong Xie, Liang-Liang Xia, Yong Hou, Shihong Zhang, Mohamed MZ Ahmed et al. "Finite element analysis and experimental study of manufacturing thin-walled five-branched AISI 304 stainless steel tubes with different diameters using a hydroforming process." *Materials* 17, no. 1 (2023): 104.

33. Dubi, Y., & Di Ventra, M. (2017). Colloquium: Heat flow and thermoelectricity in atomic and molecular junctions. *Reviews of Modern Physics*, 83(1), 131–155. <https://doi.org/10.1103/RevModPhys.83.131>
34. Liu, J., Sun, Q., & Xie, Z. (2018). Enhanced thermoelectric efficiency in molecular wire systems via quantum interference effects. *Physical Chemistry Chemical Physics*, 20(12), 8121–8128. <https://doi.org/10.1039/C7CP08534A>
35. Finch, C. M., García-Suárez, V. M., & Lambert, C. J. (2016). Giant thermopower and figure of merit in single-molecule devices. *Physical Review B*, 79(3), 033405. <https://doi.org/10.1103/PhysRevB.79.033405>
36. Kim, Y., Jeong, W., Kim, K., Lee, W., & Reddy, P. (2019). Electrostatic control of thermoelectricity in molecular junctions. *Nature Nanotechnology*, 9(11), 881–885. <https://doi.org/10.1038/nano.2014.209>